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Abstract. Many real networks in nature and society share two generic properties:
they are scale-free and they display a high degree of clustering. We show that the scale-
free nature and high clustering of real networks are the consequence of a hierarchical
organization, implying that small groups of nodes form increasingly large groups in a
hierarchical manner, while maintaining a scale-free topology. In hierarchical networks
the clustering coefficient follows a strict scaling law, which can be used to identify
the presence of a hierarchical organization in real networks. We find that several real
networks, such as the World Wide Web, actor network, the Internet at the domain level
and the semantic web obey this scaling law, indicating that hierarchy is a fundamental
characteristic of many complex systems. We the focus on the metabolic network of
43 distinct organisms and show that many small, highly connected topologic modules
combine in a hierarchical manner into larger, less cohesive units, their number and
degree of clustering following a power law. Within Escherichia Coli we find that the
uncovered hierarchical modularity closely overlaps with known metabolic functions.

1 Introduction

The availability of detailed network maps, capturing the topology of such di-
verse systems as the cell [1-4], the world wide web [5], or the sexual network [6],
have offered scientists for the first time the chance to address in quantitative
terms the generic features of real networks (for reviews see [7,8]). As a result, we
learned that networks are governed by strict organizing principles, that generate
systematic and measurable deviations from the topology predicted by the ran-
dom graph theory of Erdés and Rényi [9,10], the model used to describe complex
webs in the past four decades.

Two properties of real networks have generated considerable attention. First,
many networks display a high degree of clustering, measured by the clustering
coefficient, which for node ¢ with k; links has the value C; = 2n;/k;(k; — 1),
where n; is the number of links between the k; neighbors of i. Empirical results
indicate that C; averaged over all nodes is significantly higher for many real
networks than for a random network of similar size [11,7,8]. Furthermore, the
clustering coefficient of real networks is to a high degree independent of the
number of nodes in the network (see Fig. 9 in [7]). At the same time, many
networks of scientific or technological interest, ranging from the World Wide
Web [5] to biological networks [1-4] have been found to be scale-free [12,13],



2 Albert-Lészlé Barabasi, Erzsébet Ravasz, and Zoltan Oltvai
which means that the probability that a node has k links (i.e. degree k) follows
Pk) ~ k™7,

where -y is the degree exponent.

The scale-free property and clustering are not exclusive: for a large number
of real networks, including metabolic networks [1,2], the protein interaction net-
work [3,4], the world wide web [5] and some social networks [14-16] the scale-free
topology and high clustering coexist. Yet, most models proposed to describe the
topology of complex networks have difficulty capturing simultaneously these two
features. For example, the random network model [9,10] cannot account neither
for the scale-free, nor for the clustered nature of real networks, as it predicts
an exponential degree distribution, and the average clustering coefficient, C(N),
decreases as N~! with the number of nodes in the network. Scale-free networks
(Fig. 1a), capturing the power law degree distribution, predict a much larger
clustering coefficient than a random network. Indeed, numerical simulations in-
dicate that for one of the simplest models [12,13] the average clustering coefficient
depends on the system size as C(N) ~ N =075 [7.8], significantly larger for large
N than the random network prediction C(N) ~ N~1. Yet, this prediction still
disagrees with the finding that for several real systems C' is independent of N [7].
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Fig.1. (a) A schematic illustration of a scale-free network, whose degree distribution
follows a power law. In such a network a few highly connected nodes, or hubs (empty
circles) play an important role in keeping the whole network together. (b) Schematic
illustration of a manifestly modular network made of four highly interlinked modules
connected to each other by a few links. This intuitive topology does not have a scale-
free degree distribution, as most of its nodes have a similar number of links, and hubs
are absent (After [17])

On the biological front, it is now widely recognized that the thousands of
components of a living cell are dynamically interconnected, so that the cell’s
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functional properties are ultimately encoded into a complex intracellular web of
molecular interactions [18-23]. On the other hand, the identification and char-
acterization of system-level features of biological organization is a key issue of
post-genomic biology [24,18,19]. The concept of modularity assumes that cellu-
lar functionality can be seamlessly partitioned into a collection of modules. Each
module is a discrete entity of several elementary components and performs an
identifiable task, separable from the functions of other modules [24,20-22,25,23].
Spatially and chemically isolated molecular machines or protein complexes (such
as ribosomes and flagella) are prominent examples of such functional units, but
more extended modules, such as those achieving their isolation through the ini-
tial binding of a signaling molecule [26] are also apparent.

The dilemma of modular versus highly integrated topology is perhaps most
evident when inspecting cellular metabolism, a fully connected biochemical net-
work in which hundreds of metabolic substrates are densely integrated via bio-
chemical reactions. Within this network, however, modular organization (i.e.,
clear boundaries between sub-networks) is not immediately apparent.

A number of approaches for analyzing the functional capabilities of metabolic
networks clearly indicate the existence of separable functional elements [27,28].
Also, from a purely topologic perspective the metabolic network of Fscherichia
coli is known to possess a high clustering coefficient [2], a property that is sug-
gestive of a modular organization. In itself, this implies that the metabolism
of E. coli has a modular topology, potentially comprising several densely inter-
connected functional modules of varying sizes that are connected by few inter-
module links (Fig. 1b). However, such clearcut modularity imposes severe restric-
tions on the degree distribution, implying that most nodes have approximately
the same number of links, which contrasts with the metabolic network’s scale-
free nature [1,2]. To determine if such a dichotomy is indeed a generic property
of all metabolic networks we first calculated the average clustering coefficient for
43 different organisms [29] as a function of the number of distinct substrates,
N, present in their metabolism. We find that for all 43 organisms the cluster-
ing coefficient is about an order of magnitude larger than that expected for a
scale-free network of similar size (Fig. 2a), suggesting that metabolic networks
in all organisms are characterized by a high intrinsic potential modularity. We
also observe that in contrast with the prediction of the scale-free model, for
which the clustering coefficient decreases as N~ [7], the clustering coefficient
of metabolic networks’ is independent of their size (Fig. 2a).

Here we show that the fundamental discrepancy between models and empir-
ical measurements is rooted in a previously disregarded, yet generic feature of
many real networks, biological and non-biological: their hierarchical topology.
Indeed, in many networks one can easily identify groups of nodes that are highly
interconnected with each other, but have only a few or no links to nodes outside
of the group to which they belong to. In society such modules represent groups
of friends or coworkers [30]; in the WWW denote communities with shared in-
terests [31,32]; in the actor network they characterize specific genres or simply
individual movies. Some groups are small and tightly linked, others are larger
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Fig. 2. The average clustering coefficient, C(N), for 43 organisms [1] is shown as a
function of the number of substrates N present in each of them. Species belonging to
Archae (white star), Bacteria (black circle), and Eukaryotes (white triangle) are shown.
The dashed line indicates the dependence of the clustering coefficient on the network
size for a module-free scale-free network, while the diamonds denote C for a scale-free
network with the same parameters (N and number of links) as observed in the 43
organisms (After [17])

and somewhat less interconnected. This clearly identifiable modular organiza-
tion is at the origin of the high clustering coefficient seen in many real networks.
Yet, models reproducing the scale-free property of real networks [7,8] distinguish
nodes based only on their degree, and are blind to node characteristics that could
lead to a modular topology.

In order to bring modularity, the high degree of clustering and the scale-free
topology under a single roof, we need to assume that modules combine into each
other in a hierarchical manner, generating what we call a hierarchical network.
The presence of a hierarchy and the scale-free property impose strict restrictions
on the number and the degree of cohesiveness of the different groups present
in a network, which can be captured in a quantitative manner using a scaling
law, describing the dependence of the clustering coefficient on the node degree.
We use this scaling law to identify the presence of a hierarchical architecture
in several real networks, and the absence of such hierarchy in geographically
organized webs.

2 Hierarchical Network Model

We start by constructing a hierarchical network model, that combines the scale-
free property with a high degree of clustering. Our starting point is a small
cluster of five densely linked nodes (Fig.3a). Next we generate four replicas of
this hypothetical module and connect the four external nodes of the replicated
clusters to the central node of the old cluster, obtaining a large 25-node module
(Fig. 3b). Subsequently, we again generate four replicas of this 25-node module,
and connect the 16 peripheral nodes to the central node of the old module
(Fig. 3c), obtaining a new module of 125 nodes. These replication and connection
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steps can be repeated indefinitely, in each step increasing the number of nodes
in the system by a factor five.

(b) n=1, N=25

(c) n=2, N=125

Fig. 3. The iterative construction leading to a hierarchical network. Starting from a
fully connected cluster of five nodes shown in (a) (note that the diagonal nodes are
also connected — links not visible), we create four identical replicas, connecting the
peripheral nodes of each cluster to the central node of the original cluster, obtaining a
network of N = 25 nodes (b). In the next step we create four replicas of the obtained
cluster, and connect the peripheral nodes again, as shown in (c), to the central node of
the original module, obtaining a N = 125 node network. This process can be continued
indefinitely (After [33])

Precursors to the model described in Fig.3 have been proposed in [34] and
extended and discussed in [35,36] as a method of generating deterministic scale-
free networks. Yet, it was believed that aside from their deterministic structure,
their statistical properties are equivalent with the stochastic models that are
often used to generate scale-free networks. In the following we argue that such
hierarchical construction generates an architecture that is significantly different
from the networks generated by traditional scale-free models. Most important,
we show that the new feature of the model, its hierarchical character, are shared
by a significant number of real networks.

First we note that the hierarchical network model seamlessly integrates a
scale-free topology with an inherent modular structure. Indeed, the generated
network has a power law degree distribution with degree exponent v = 1 +
In5/In4 = 2.161 (Fig.4a). Furthermore, numerical simulations indicate that
the clustering coefficient, C' ~ 0.743, is independent of the size of the network
(Fig. 4c). Therefore, the high degree of clustering and the scale-free property are
simultaneously present in this network.
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Fig. 4. Scaling properties of the hierarchical model shown in Fig.3 (N = 57). (a)
The numerically determined degree distribution. The assymptotic scaling, with slope
v = 1+ In5/In4, is shown as a dashed line. (b) The C(k) curve for the model,
demonstrating that it follows (1). The open circles show C(k) for a scale-free model
[12] of the same size, illustrating that it does not have a hierarchical architecture. (c)
The dependence of the clustering coefficient, C, on the size of the network N. While
for the hierarchical model C is independent of N (4), for the scale-free model C(N)
decreases rapidly (o)

The most important feature of the network model of Fig. 3, not shared by
either the scale-free [12,13] or random network models [9,10], is its hierarchical
architecture. The network is made of numerous small, highly integrated five node
modules (Fig.3a), which are assembled into larger 25-node modules (Fig. 3b).
These 25-node modules are less integrated but each of them is clearly separated
from the other 25-node modules when we combine them into the even larger
125-node modules (Fig. 3c). These 125-node modules are even less cohesive, but
again will appear separable from their replicas if the network expands further.

This intrinsic hierarchy can be characterized in a quantitative manner using
the recent finding of Dorogovtsev, Goltsev and Mendes [35] that in deterministic
scale-free networks the clustering coefficient of a node with k links follows the
scaling law

Ck) ~ k™" (1)

We argue that this scaling law quantifies the coexistence of a hierarchy of
nodes with different degrees of clustering, and applies to the model of Fig. 3a—
as well. Indeed, the nodes at the center of the numerous 5-node modules have
a clustering coefficient C' = 1. Those at the center of a 25-node module have
k =20 and C' = 3/19, while those at the center of the 125-node modules have
k = 84 and C = 3/83, indicating that the higher a node’s degree the smaller
is its clustering coefficient, asymptotically following the 1/k law (Fig.4b). In
contrast, for the scale-free model proposed in [12] the clustering coefficient is
independent of k, i.e. the scaling law (1) does not apply (Fig.4b). The same is
true for the random [9,10] or the various small world models [11,37], for which
the clustering coefficient is independent of the nodes’ degree.

Therefore, the discrete model of Fig. 3 combines within a single framework
the two key properties of real networks: their scale-free topology and high mod-
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ularity, which results in a system-size independent clustering coefficient. Yet, the
hierarchical modularity of the model results in the scaling law (1), which is not
shared by the traditional network models. The question is, could hierarchical
modularity, as captured by this model, characterize real networks as well?

3 Hierarchical Organization in Non-Biological Networks

To investigate if such hierarchical organization is present in real networks we
measured the C(k) function for several networks for which large topological
maps are available. Next we discuss each of these systems separately.

Actor Network: Starting from the www.IMDB.com database, we connect any
two actors in Hollywood if they acted in the same movie, obtaining a network
of 392,340 nodes and 15,345,957 links. Earlier studies indicate that this network
is scale-free with an exponential cutoff in P(k) for high & [12,38,39]. As Fig. 5a
indicates, we find that C(k) scales as k~!, indicating that the network has a
hierarchical topology. Indeed, the majority of actors with a few links (small k)
appear only in one movie. Each such actor has a clustering coefficient equal
to one, as all actors the actor has links to are part of the same cast, and are
therefore connected to each other. The high £ nodes include many actors that
acted in several movies, and thus their neighbors are not necessarily linked to
each other, resulting in a smaller C'(k). At high k the C'(k) curve splits into two
branches, one of which continues to follow (1), while the other saturates. One
explanation of this split is the decreasing amount of datapoints available in this
region. Indeed, in the high %k region the number of nodes having the same k is
rather small. If one of these nodes corresponds to an actor that played only in
a few movies with hundreds in the cast, it will have both high k& and high C,
considerably increasing the average value of C(k). The k values for which such
a high C nodes are absent continue to follow the k=1 curve, resulting in jumps
between the high and small C' values for large k. For small k these anomalies are
averaged out.

Language network: Recently a series of empirical results have shown that
the language, viewed as a network of words, has a scale-free topology [40-43].
Here we study the network generated connecting two words to each other if
they appear as synonyms in the Merriam Webster dictionary [41]. The obtained
semantic web has 182,853 nodes and 317,658 links and it is scale-free with degree
exponent v = 3.25. The C(k) curve for this language network is shown in Fig. 5b,
indicating that it follows (1), suggesting that the language has a hierarchical
organization.

World Wide Web: On the WWW two documents are connected to each other
if there is an URL pointing from one document to the other one. The sample
we study, obtained by mapping out the www.nd.edu domain [5], has 325,729
nodes and 1,497,135 links, and it is scale-free with degree exponents yout = 2.45
and 7, = 2.1, characterising the out and in-degree distribution, respectively. To
measure the C(k) curve we made the network undirected. While the obtained
C(k), shown in Fig. 5¢, does not follow as closely the scaling law (1) as observed
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in the previous two examples, there is clear evidence that C'(k) decreases rapidly
with k, supporting the coexistence of many highly interconnected small nodes
with a few larger nodes, which have a much lower clustering coefficient.

Indeed, the Web is full of groups of documents that all link to each other.
For example, www.nd.edu/~networks, our network research dedicated site, has
a high clustering coefficient, as the documents it links to have links to each
other. The site is one of the several network-oriented sites, some of which point
to each other. Therefore, the network research community still forms a relatively
cohesive group, albeit less interconnected than the www.nd.edu/~networks site,
thus having a smaller C. This network community is nested into the much larger
community of documents devoted to statistical mechanics, that has an even
smaller clustering coefficient. Therefore, the k—dependent C(k) reflects the hier-
archical nesting of the different interest groups present on the Web. Note that
C(k) ~ k=! for the WWW was observed and briefly noted in [44].
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Fig. 5. The scaling of C(k) with k for four large networks: (a) Actor network, two
actors being connected if they acted in the same movie according to the www.IMDB.com
database. (b) The semantic web, connecting two English words if they are listed as
synonyms in the Merriam Webster dictionary [41]. (¢) The World Wide Web, based
on the data collected in [5]. (d) Internet at the Autonomous System level, each node
representing a domain, connected if there is a communication link between them. The
dashed line in each figure has slope —1, following (1) (After [33])

Internet at the AS level: The Internet is often studied at two different levels
of resolution. At the router level we have a network of routers connected by
various physical communication links. At the interdomain or autonomous system
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(AS) level each administrative domain, composed of potentially hundreds of
routers, is represented by a single node. Two domains are connected if there is
at least one router that connects them. Both the router and the domain level
topology have been found to be scale-free [45]. As Fig.5d shows, we find that
at the domain level the Internet, consisting of 65,520 nodes and 24,412 links
[46], has a hierarchical topology as C(k) is well approximated with (1). The
scaling of the clustering coefficient with k for the Internet was earlier noted by
Vazquez, Pastor-Satorras and Vespignani (VPSV) [47,48], who observed C(k) ~
k=075 VPSV interpreted this finding, together with the observation that the
average nearest-neighbor connectivity also follows a power-law with the node’s
degree, as a natural consequence of the stub and transit domains, that partition
the network in a hierarchical fashion into international connections, national
backbones, regional networks and local area networks.

Our measurements indicate, however, that some real networks lack a hierar-
chical architecture, and do not obey the scaling law (1). In particular, we find
that the power grid and the router level Internet topology have a k independent
C(k).

Internet at the router level: The router level Internet has 260,657 nodes con-
nected by 1,338,100 links [49]. Measurements indicate that the network is scale-
free [45,50] with degree exponent v = 2.23. Yet, the C'(k) curve (Fig.6a), apart
from some fluctuations, is largely independent of k, in strong contrast with the
C(k) observed for the Internet’s domain level topology (Fig.5d), and in agree-
ment with the results of VPSV [47,48], who also note the absence of a hierarchy
in router level maps.

Power Grid: The nodes of the power grid are generators, transformers and
substations and the links are high voltage transmission lines. The network stud-
ied by us represents the map of the Western United States, and has 4,941 nodes
and 13,188 links [11]. The results again indicate that apart from fluctuations,
C(k) is independent of k.
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Fig. 6. The scaling of C(k) for two large, non-hierarchical networks: (a) Internet at
router level [49]. (b) The power grid of Western United States. The dashed line in each
figure has slope —1, while the solid line corresponds to the average clustering coefficient
(After [33])
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It is quite remarkable that these two networks share a common feature: a
geographic organization. The routers of the Internet and the nodes of the power
grid have a well defined spatial location, and the link between them represent
physical links. In contrast, for the examples discussed in Fig.5 the physical
location of the nodes was either undefined or irrelevant, and the length of the
link was not of major importance. For the router level Internet and the power grid
the further are two nodes from each other, the more expensive it is to connect
them [50]. Therefore, in both systems the links are driven by cost considerations,
generating a distance driven structure, apparently excluding the emergence of
a hierarchical topology. In contrast, the domain level Internet is less distance
driven, as many domains, such as the AT&T domain, span the whole United
States.

In summary, we offered evidence that for four large networks C(k) is well
approximated by C(k) ~ k™!, in contrast to the k—independent C(k) predicted
by both the scale-free and random networks. In addition, there is evidence for
similar scaling in the metabolism [17] and protein interaction networks [51].
This indicates that these networks have an inherently hierarchical organization.
In contrast, hierarchy is absent in networks with strong geographical constraints,
as the limitation on the link length strongly constraints the network topology.

4 Hierarchy in Metabolic Networks and the Functional
Organization of Escherichia Coli

To investigate if hierarchical organization is present in cellular metabolism we
measured the C(k) function for the metabolic networks of all 43 organisms. As
shown in Fig. 7, for each organism C(k) is well approximated by C(k) ~ k=1,
in contrast to the k—independent C(k) predicted by both the scale-free and
modular networks. This provides direct evidence for an inherently hierarchical
organization.

A key issue from a biological perspective is whether the identified hierarchi-
cal architecture reflects the true functional organization of cellular metabolism.
To uncover potential relationships between topological modularity and the func-
tional classification of different metabolites we concentrate on the metabolic
network of Escherichia coli, whose metabolic reactions have been exhaustively
studied, both biochemically and genetically [52].

Using a previously established graph-theoretical representation [1], we first
subjected FE. coli’s metabolic organization to a three step reduction process,
replacing non-branching pathways with equivalent links, allowing us to decrease
its complexity without altering the network topology [54]. Next, we calculated
the topological overlap matrix, Or(i,7), of the condensed metabolic network
(Fig. 8). A topological overlap of one between substrates ¢ and j implies that
they are connected to the same substrates, while a zero value indicates that 4
and j do not share links to common substrates among the metabolites they react
with.
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Fig. 7. The dependence of the clustering coefficient on the node’s degree in three or-
ganisms: (a) Aquider Aeolicus (archaea), (b) Escherichia Coli (bacterium), (c) and
Saccharomices cerevisiae (eukaryote). In (d) the C'(k) curves averaged over all 43 or-
ganisms are shown, while the inset displays all 43 species together. The dashed lines
correspond to C(k) ~ k™', and in (a—c) the diamonds represent C(k) expected for a
scale-free network (Fig. 1a) of similar size, indicating the absence of scaling. The wide
fluctuations are due to the small size of the network (After [17])

The metabolites that are part of highly integrated modules have a high topo-
logical overlap with their neighbors, and we find that the larger the overlap be-
tween two substrates within the E. coli metabolic network the more likely it is
that they belong to the same functional class.

As the topological overlap matrix is expected to encode the comprehensive
functional relatedness of the substrates forming the metabolic network, we inves-
tigated whether potential functional modules encoded in the network topology
can be uncovered automatically. Initial application of an average-linkage hierar-
chical clustering algorithm [53] to the overlap matrix of the small hypothetical
network shown in Fig. 8a placed those nodes that have a high topological overlap
close to each other (Fig. 8b). Also, the method has clearly identified the three
distinct modules built into the model of Fig. 8a, as illustrated by the fact that
the EFG and HIJK modules are closer to each other in a topological sense than
the ABC module (Fig. 8b).

Application of the same technique on the E. coli overlap matrix Or (i, j) pro-
vides a global topologic representation of E. coli metabolism (Fig. 8c). Groups
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Fig. 8. (a) Topological overlap illustrated on a small hypothetical network. For each
pair of nodes, 7 and j, we define the topological overlap Ot (4, j) = Ju (4, 7)/[min(k:, k;)+
1—L(4,7)], where Ju (4, j) denotes the number of nodes to which both ¢ and j are linked
to plus L(3,j), which is one if there is a direct link between 7 and j, zero otherwise,
and min(k;, k;) is the smaller of the k; and k; degrees. On each link we indicate the
topological overlap for the connected nodes and in parenthesis next to each node we
indicate it’s clustering coefficient. (b) The topological overlap matrix corresponding to
the small network shown in (a). The rows and columns of the matrix were reordered by
the application of an average linkage clustering method [53] to its elements, allowing us
to identify and place close to each other those nodes that have high topological overlap.
The color code denotes the degree of topological overlap between the nodes (see side-
bar). The associated tree clearly reflects the three distinct modules built into the model
of (a), as well as the fact that the EFG and HIJK modules are closer to each other in
topological sense that the ABC module. (c¢) The topologic overlap matrix correspond-
ing to the E. coli metabolism, together with the corresponding hierarchical tree (top)
that quantifies the relationship between the different modules. The branches of the
tree are color coded to reflect the functional classification of their substrates. The bio-
chemical classes we used to group the metabolites represent carbohydrate metabolism
(blue), nucleotide and nucleic acid metabolism (red), protein, peptide and amino acid
metabolism (green), lipid metabolism (cyan), aromatic compound metabolism (dark
pink), monocarbon compound metabolism (yellow) and coenzyme metabolism (light
orange) [29]. The color code of the matrix denotes the degree of topological overlap
shown in the matrix. On the bottom we show the large-scale functional map of the
metabolism, as suggested by the hierarchical tree (After [17])
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of metabolites forming tightly interconnected clusters are visually apparent, and
upon closer inspection the hierarchy of nested topologic modules of increasing
sizes and decreasing interconnectedness are also evident. To visualize the rela-
tionship between topological modules and the known functional properties of the
metabolites, we color coded the branches of the derived hierarchical tree accord-
ing to the predominant biochemical class of the substrates it produces, using the
standard, small molecule biochemistry based classification of metabolism [29].
As shown in Fig. 8c, and in the three dimensional representation in Fig. 9,
we find that most substrates of a given small molecule class are distributed
on the same branch of the tree (Fig. 8c) and correspond to relatively well-
delimited regions of the metabolic network (Fig. 9). Therefore, there are strong
correlations between shared biochemical classification of metabolites and the
global topological organization of E. coli metabolism (Fig. 8c, bottom, and [54]).

Fig. 9. 3-D representation of the reduced E. coli metabolic network. Each node is color
coded by the functional class to which it belongs, and is identical to the color code
applied to the branches of the tree shown in Fig. 8c. Note that the different functional
classes are visibly segregated into topologically distinct regions of metabolism. The
blue-shaded region denotes the nodes belonging to pyrimidine metabolism, discussed
below (After [17])

To correlate the putative modules obtained from our graph theory-based
analysis to actual biochemical pathways, we concentrated on the pathways in-
volving the pyrimidine metabolites. Our method divided these pathways into
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four putative modules (Fig. 10a), which represent a topologically well-limited
area of E. coli metabolism (Fig. 9, circle).
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Fig. 10. A detailed diagram of the metabolic reactions that surround and incorporate
the pyrimidine metabolic module. Red boxes denote the substrates directly appearing
in the reduced metabolism and the tree shown in Fig. 9. Substrates in green boxes are
internal to pyrimidine metabolism, but represent members of non-branching pathways
or end pathways branching from a metabolite with multiple connections [54]. Blue
and black boxes show the connections of pyrimidine metabolites to other parts of the
metabolic network. Black boxes denote core substrates belonging to other branches
of the metabolic tree Fig. 8c, while blue boxes denote non-branching pathways (if
present) leading to those substrates. The shaded boxes around the reactions highlight
the modules suggested by the hierarchical tree. The shaded blue boxes along the links
display the enzymes catalyzing the corresponding reactions, and the arrows show the
direction of the reactions according to the WIT metabolic maps [29]. (After [17])

As shown in Fig. 10b, all highly connected metabolites (Fig. 10b, red bozes)
correspond to their respective biochemical reactions within pyrimidine metabolism,
together with those substrates that were removed during the original network
reduction procedure, and then re-added (Fig. 10b, green bozes). However, it
is also apparent that putative module boundaries do not always overlap with
intuitive ‘biochemistry-based’ boundaries. For instance, while the synthesis of
UMP from L-glutamine is expected to fall within a single module based on a
linear set of biochemical reactions, the synthesis of UDP from UMP leaps pu-
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tative module boundaries. Thus, further experimental and theoretical analyses
will be needed to understand the relationship between the decomposition of E.
coli metabolism offered by our topology-based approach, and the biologically
relevant sub-networks.

The organization of metabolic networks is likely to combine a capacity for
rapid flux reorganization with a dynamic integration with all other cellular
function [2]. Our results indicate that the system-level structure of cellular
metabolism is best approximated by a hierarchical network organization with
seamlessly embedded modularity. In contrast to current, intuitive views of modu-
larity (Fig. 1b) which assume the existence of a set of modules with a non-uniform
size potentially separated from other modules, we find that the metabolic net-
work has an inherent self-similar property: there are many highly integrated
small modules, which group into a few larger modules, which in turn can be in-
tegrated into even larger modules. This is supported by visual inspection of the
derived hierarchical tree (Fig. 8c, which offers a natural breakdown of metabolism
into several large modules, which are further partitioned into smaller, but more
integrated sub-modules.

5 Stochastic Model and Universality

The hierarchical model described in Fig.3 predicts C(k) ~ k~!, which offers
a rather good fit to three of the four C(k) curves shown in Fig.5. The ques-
tion is, is this scaling law (1) universal, valid for all hierarchical networks, or
could different scaling exponent characterize the scaling of C'(k)? Defining the
hierarchical exponent, 3, as

O(k) ~ k=7, (2)

is f# = 1 a universal exponent, or it’s value can be changed together with ~?
In the following we demonstrate that the hierarchical exponent § can be tuned
as we tune some of the network parameters. For this we propose a stochastic
version of the model described in Fig. 3.

We start again with a small core of five nodes all connected to each other
(Fig. 3a) and in step one (n = 1) we make four copies of the five node module.
Next, we randomly pick a p fraction of the newly added nodes and connect
each of them independently to the nodes belonging to the central module. We
use preferential attachment [12,13] to decide to which central node the selected
nodes link to. That is, we assume that the probability that a selected node will
connect to a node i of the central module is k;/ >, kj, where k; is the degree of
node ¢ and the sum goes over all nodes of the central module. In the second step
(n = 2) we again create four identical copies of the 25-node structure obtained
thus far, but we connect only a p? fraction of the newly added nodes to the
central module. Subsequently, in each iteration n the central module of size 5"
is replicated four times, and in each new module a p” fraction will connect to
the current central module, requiring the addition of (5p)™ new links.

As Fig. 11 shows, changing p alters the slope of both P(k) and C(k) on a
log—log plot. In general, we find that increasing p decreases the exponents v and
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B (Fig. 11b,d). The exponent 8 = 1 is recovered for p = 1, i.e. when all nodes of
a module gain a link. While the number of links added to the network changes
at each iteration, for any p < 1 the average degree of the infinitely large network
is finite. Indeed, the average degree follows

(k) = 5 (% + %) : (3)

<10

10

k
6.0 T T T T T T 2.0 .
\
(b) . (d)
501 g ] 18 ¢
N
N
S 16
4.0 [N 1 L4 .
y S B s .
3.0 ~a
B S 1.2 b
\‘\\\
20 | 10 t *
10 ‘ ‘ ‘ ‘ ‘ ‘ 08 ‘ ‘ ‘ ‘ ‘ ‘
04 05 06 07 08 09 10 11 04 05 06 07 08 09 10 11
p p

Fig.11. The scaling properties of the stochastic model. (a) The degree distribution
for different p values, indicating that P(k) follows a power law with a p dependent
slope. (b) The dependence of the degree exponent « on p, determined by fitting power
laws to the curves shown in (a). The exponent 7 appears to follow approximately
~v(p) ~ 1/p (dashed line). (¢) The C(k) curve for different p values, indicating that the
hierarchical exponent 8 depends on p. (d) The dependence of 3 on the parameter p.
The simulations were performed for N = 57(78,125) nodes (After [33])

Interestingly, the scaling of C(k) is not a unique property of the model dis-
cussed above. A version of the model, where we keep the fraction of selected
nodes, p, constant from iteration to iteration, also generates p dependent 3 and
~ exponents. Furthermore, recently several results indicate that the scaling of
C(k) is an intrinsic feature of several existing growing networks models. Indeed,
aiming to explain the potential origin of the scaling in C(k) observed for the
Internet, VSPV note that the fitness model [55,56] displays a C(k) that ap-
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pears to scale with k. While there is no analytical evidence for C(k) ~ k=9
yet, numerical results [47,48] suggest that the presence of fitness does generate
a hierarchical network architecture. In contrast, in a recent model proposed by
Klemm and Eguiluz there is analytical evidence that the network obeys the scal-
ing law (1) [57]. In their model in each time step a new node joins the network,
connecting to all active nodes in the system. At the same time an active node
is deactivated with probability p ~ k1. The insights offered by the hierarchical
model can help understand the origin of the observed C(k) ~ k~!. By deacti-
vating the less connected nodes a central core emerges to which all subsequent
nodes tend to link to. New nodes have a large C' and small k, thus they are
rapidly deactivated, freezing into a large C state. The older, more connected,
surviving nodes are in contact with a large number of nodes that have already
disappeared from the active list, and they have small C*.

Finally, Szabd, Alava and Kertész have developed a rate equation method to
systematically calculate C'(k) for evolving networks models [59]. Applying the
method to a model proposed by Holme and Kim [60] to enhance the degree of
clustering coefficient C' seen in the scale-free model [12], they have shown that
the scaling of C'(k) depends on the parameter p, which governs the rate at which
new nodes connect to the neighbors of selected nodes, bypassing preferential at-
tachment. As for p = 0 the Holme—Kim model reduces to the scale-free model,
Szab6, Alava and Kertész find that in this limit the scaling of C'(k) vanishes.
These models indicate that several microscopic mechanisms could generate a
hierarchical topology, just as several models are able to create a scale-free net-
work [7,8].

6 Discussion and Outlook

The identified hierarchical architecture offers a new perspective on the topology
of complex networks. Indeed, the fact that many large networks are scale-free is
now well established. It is also clear that most networks have a modular topology,
quantified by the high clustering coefficient they display. Such modules have
been proposed to be a fundamental feature of biological systems [24,17], but
have been discussed in the context of the WWW [61,31], and social networks as
well [30,62]. The hierarchical topology offers a new avenue for bringing under a
single roof these two concepts, giving a precise and quantitative meaning for the
network’s modularity. It indicates that we should not think of modularity as the
coexistence of relatively independent groups of nodes. Instead, we have many
small clusters, that are densely interconnected. These combine to form larger,
but less cohesive groups, which combine again to form even larger and even less
interconnected clusters. This self-similar nesting of different groups or modules
into each other forces a strict fine structure on real networks.

! Note, however, that as new nodes tend to connect to nodes that were added to
the network shortly before them, the model generates a close to one dimensional
structure in time. See e.g. [58]
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For biological systems hierarchical modularity is consistent with the notion
that evolution may act at many organizational levels simultaneously: the accu-
mulation of many local changes, that affect the small, highly integrated modules,
could slowly impact the properties of the larger, less integrated modules. The
emergence of the hierarchical topology via copying and reusing existing mod-
ules [24] and motifs [23], a process reminiscent of the results of gene duplica-
tion [63,64], offers a special role to the modules that appeared first in the network.
While the model of Fig. 4 reproduces the large-scale features of the metabolism,
understanding the evolutionary mechanism that explains the simultaneous emer-
gence of the observed hierarchical and scale-free topology of the metabolism, and
its generality to cellular organization, is now a prime challenge.

Most interesting is, however, the fact that the hierarchical nature of these
networks is well captured by a simple quantity, the C(k) curve, offering us a
relatively straightforward method to identify the presence of hierarchy in real
networks. The law (1) indicates that the number and the size of the groups of
different cohesiveness is not random, but follow rather strict scaling laws.

The presence of such a hierarchical architecture reinterprets the role of the
hubs in complex networks. Hubs, the highly connected nodes at the tail of the
power law degree distribution, are known to play a key role in keeping com-
plex networks together, playing a crucial role from the robustness of the net-
work [65,66] to the spread of viruses in scale-free networks [67]. Our measure-
ments indicate that the clustering coefficient characterizing the hubs decreases
linearly with the degree. This implies that while the small nodes are part of
highly cohesive, densely interlinked clusters, the hubs are not, as their neighbors
have a small chance of linking to each other. Therefore, the hubs play the im-
portant role of bridging the many small communities of clusters into a single,
integrated network.

In many ways our study offers only a starting point for understanding the in-
terplay between the scale-free, hierarchical and modular nature of real networks.
While the C(k) curves offer a tool to unearth the presence of a hierarchy, it is
unclear what are the minimal ingredients at the model level for such a hierarchy
to emerge. Finally, the role of the geometrical factor, which appears to remove
the hierarchy, needs to be elucidated. Further modeling and empirical studies
should allow us to address these questions.
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